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Abstract

We reported the non-volatile electric field-mediated magnetic properties in the half-metallic Heusler alloy Co2FeAl/
Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure at room temperature. The remanent magnetization with different applied
electric field along [100] and [01-1] directions was achieved, which showed the non-volatile remanent magnetization
driven by an electric field. The two giant reversible and stable remanent magnetization states were obtained by
applying pulsed electric field. This can be attributed to the piezostrain effect originating from the piezoelectric
substrate, which can be used for magnetoelectric-based memory devices.
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Background
With the rapid development of information technol-
ogy, the increasing demand for high speed, low
power dissipation, and non-volatility in applied
devices has been received great attention in recent
years. Aiming to meet the need, the electric field
control magnetism via magnetoelectric (ME) coup-
ling in the ferromagnetic/ferroelectric (FM/FE)
multiferroic heterostructures has been proved to be
able to provide a combination of the above advan-
tages. In these FM/FE heterostructures [1–9], ME
coupling mechanisms have been widely recognized as
three aspects, including piezostrain effect, charge
effect, and exchange bias [10–15]. Among this, the
piezostrain is obtained by piezostrain effect when the
electric field was applied on the ferroelectric mater-
ial, which can induce a large magnetic response of
magnetic layer. Based on the piezostrain-mediated
ME coupling, the particular ferroelectric crystal
material Pb(Mg1/3Nb2/3)O3-30%PbTiO3(PMN-PT)
with a large piezostrain effect is often used in FM/

FE heterostructure, because the d33 of the material is
much larger than the d31; strain or charge induced
by electric field applied to the PMN-PT layer can
manipulate the magnetic anisotropy of the adjacent
magnetic layer, which results in a ME effect [16–18].
In the FM/FE heterostructure, the half-metallic Heusler
alloy Co2FeAl (CFA) as the magnetic layer should be used
as an eligible material choice [19–22]. The CFA thin film
has excellent material properties, such as a low magnetic
damping constant, high spin polarization, and a high
Curie temperature (1000 K), which are regarded as ideal
spin-polarized electron sources for spintronics devices
[23, 24]. Wu et. al. reported the piezoelectric strain re-
sponse in the (011)-oriented single ferroelectric material.
The relatively large changes in remannent strain was ob-
tained only applied and released by an electric field [25].
However, the piezostrain-mediated magnetic properties of
a magnetic layer by applying an electric field on the PMN-
PT substrate are essential for the application in the elec-
tronics devices. Therefore, in this paper, we investigated
non-volatile electric field-mediated magnetic properties in
Co2FeAl/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure at
room temperature. The non-volatile electric-field-driven
remanent magnetization along [100] and [01-1] directions
was achieved, and the two giant reversible and stable rem-
anent magnetization states are obtained by applying
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pulsed electric field [26]. This can be attributed to the
piezostrain effect originating from the piezoelectric sub-
strate, which can be a potential candidate for electronics
devices application.

Methods
The heterostructure was composed of CFA alloy as FM
layer and PMN-PT (011) as FE layer. CFA thin film was
deposited by direct current (DC) magnetron sputtering
at 600 °C under an Ar pressure of 0.1 Pa and flow rate
at 10 SCCM (SCCM denotes cubic centimeter per
minute at STP), with a base pressure of 2 × 10−5 Pa. The
thickness of CFA thin film was 40 nm. The Pt layers
were sputtered by 2 mm-thickness Pt target as elec-
trodes. The thickness of the top and bottom Pt layer
were 10 and 50 nm, respectively. Cu wires were
connected to the electrodes by the adhesive tape. The
static magnetic properties of the CFA/PMN-PT hetero-
structure were investigated by vibrating sample
magnetometer (VSM, MicroSense EV9). The DC power
supply (Keithley 2410) was used to provide biased
voltage. The magnetic domain images were recorded by
magnetic force microscopy (MFM) using Asylum
Research© MFP-3D at room temperature with soft
magnetic tips magnetized perpendicularly to the sample
plane. All the measurements were conducted at room
temperature.

Results and Discussions
The basic building blocks of the CFA/PMN-PT hetero-
structure and the coordinate system of in-plane static
magnetic measurement were shown in Fig. 1a, b, re-
spectively. The effective electric-field-induced

piezostrain field (Hσ) and magnetic anisotropy field (Hk)
are perpendicular to each other. We define the magnetic
field H applied along [100] direction as 0°, whereas, the
[01-1] direction as 90° [26]. From the PMN-PT hyster-
esis loop (P-E loop, 1 Hz) and strain curve (S-E), which
measured by ferroelectric and strain gauges in Fig. 1c,
we can see that the saturation polarization of PMN-PT
is about 25 μCcm−2, and the coercive field is about
100 V (2.5 KVcm−1). MFM image is measured when the
applied magnetic field 1000 Oe was removed as shown
in Fig. 1d. The dark and light areas indicate the forma-
tion of an out-of-plane magnetization component.
Consequently, an array of oscillating “up and down”
magnetic domain forms, known as stripe domain (SD),
which suggests the existence of sizeable perpendicular
magnetic anisotropy [27].
The magnetic hysteresis loops of the CFA/PMN-PT

heterostructure were measured along the direction of
[100] and [01-1] under applied electric fields of ± 0
and ± 5 kVcm−1 [11]. The electric field was applied
from the top to the bottom as positive, otherwise
negative. The − 0 and + 0 kVcm−1 are remnant
polarization states after the applied electric fields of
− 10 and + 10 kVcm−1 turned off, respectively. The
magnetic hysteresis loops as shown in Fig. 2a
indicated a clear in-plane magnetic anisotropy. The
blue line represents easy magnetization direction of
in-plane hysteresis loop along the direction [100], and
the remanent magnetization is significantly smaller
than the saturation magnetization. The M-H loops
were constituted by a two magnetization process: the
M-H curve exhibits a linear relationship between the
applied magnetic field from the positive saturation

Fig. 1 Schematic of the CFA/PMN-PT multiferroic heterostructure (a) and schematic of the coordinate system (b). α, φ, and θ are the angles of
the effective electric-field-induced piezostrain field (Hσ), magnetic anisotropy field (Hk), and magnetization (Ms) with respect to the total effective
field (H0), respectively. θ0 is the angle of the Hk with respect to the magnetic field (H). c The hysteresis loop (P-E loop, 1 Hz) and strain curve (S-E)
of PMN-PT substrate along [100] direction. d A typical MFM image of CFA film
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field to the negative coercivity field and the abrupt
reverse of M when the H reaches coercivity field; the
M-H curve returns to linear relationship as the
applied magnetic field continues to decrease, which can
be considered that the film has a stripe domain structure.
The red line denotes hard magnetization direction, which
is measured along the direction [01-1]. Figure 2b shows
the hysteresis loops of the CFA/PMN-PT heterostructure
under the electric field E = 5 kVcm−1. Compared with the
result as shown in Fig. 1a, easy axis direction rotates 90°,
that is to say, it is rotating from the direction [100]
to [01-1] [28–30]. As shown in Fig. 2c, the blue line
coincides with the red line, and the in-plane mag-
netic anisotropy disappears under the polarization
state + 0 kVcm−1. The magnetic easy axis returns to
[100] direction when the applied electric field con-
tinues to decrease to − 5 kVcm−1 as shown in Fig. 2d.
In order to investigate the change of the magnetic
anisotropy field with different electric fields, the
remanent magnetization at different angles was
measured as shown in Fig. 2e. In this measurement, the
sample was rotated from 0° to 360° in the plane with the
step of 5°. The in-plane magnetic anisotropy is measured
in the CFA/PMN-PT heterostructure. At − 0 kVcm−1, the
easy magnetization direction of in-plane remanent
magnetization curve is along the direction [100]. The
value of relative remanent magnetization (Mr/Ms) is
significantly smaller than 1, which indicates a part of the
magnetic moment not coherent arrangement. With
increasing electric field to + 2.5 kVcm−1, the magnetic
anisotropy decreases. When continuing to increase the
electric field to + 5 kVcm−1, the in-plane magnetic
anisotropy reappears. Compared with the remanent
magnetization curve at − 0 and + 5 kVcm−1, the easy axis
rotates 90°, which is consistent with the result of hysteresis
loops as shown in Fig. 2a, b. This can be attributed to the
piezostrain effect induced by electric field, and the piezo-
electric effect of PMN-PT will produce new magnetic

anisotropy (stress anisotropy Hσ) in the CFA/PMN-PT
heterostructure. The magnetic anisotropy of the CFA/
PMN-PT heterostructures is affected by the combination
of Hσ and Hk [31].
In order to verify the piezostrain effect induced by the

electric field, the remanent magnetization with the
applied electric field in the [01-1] and [100] directions
was measured. We measured the change of remanent
magnetization by sweeping the electric field after remov-
ing the saturation magnetic field 1200 Oe in the [100]
and [01-1] directions, respectively. The asymmetric
butterfly-like remanent magnetization versus applied
electric field is obtained. We can determine that the
remanence of the CFA/PMN-PT heterostructure is
responsive to an electric field shaped as a butterfly; the
M-E curves were measured by sweeping the electric field
from + 10 to − 10 kVcm−1 in Fig. 3a, c. This response is
symmetrical with the variation curve of stress with elec-
tric field, which indicates that the stress effect plays a
dominant role in the magnetic control of the sample. It
is worth noting that the residual magnetization in the
remnant polarization state (± 0 kVcm−1) is different from
+ 10 kVcm−1 demonstrated by the capital letters A and E
in Fig. 3 and − 10 kVcm−1 demonstrated by B and F,
which is the residual stress from the PMN-PT substrate.
Residual polarization state is the remanence of the
0 kVcm−1 state, which is derived from the PMN-PT
substrate residual stress, and not the same at + 10
and − 10 kVcm−1. It is consistent with the residual
strain of strain curve in Fig. 1c.
We have carried out experiments on the relationship

between the remanence in the unsaturated polarization
state (± 5 kVcm−1) with the electric field in the [100] and
[01-1] directions, in order to reflect the non-volatile
control of the electric field. It can be found that the
change of the remanence with the electric field also
shows a change in the shape as a loop-like, and the rem-
anence of the sample shows a good non-volatile, which is

Fig. 2 a–d The magnetic hysteresis loops at − 0, 0, 5, and − 5 kVcm−1, respectively. e Measured Mr/Ms versus θ0 curves under various electric fields
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from the remnant polarization stress under the positive
and negative electric fields, as shown in Fig. 3b, d. This
has a good prospect for stress-tolerant non-volatile mem-
ory devices.
For magnetic memory application, the non-volatile

remanence in the pulsed electric field was achieved, as
shown in Fig. 4. Intermittent positive and negative elec-
tric fields of ± 5 or ± 10 kVcm−1 are applied across the
sample in the [100] and [01-1] directions. Firstly, the
magnetic field is set up to 1200 Oe and reduced to 0
subsequently. Then the pulsed electric field is first stuck
at ± 5 kVcm−1 in the [100] direction and reduced to 0
subsequently with results of the two residual
polarization states demonstrated by the capital letters A

and B in Fig. 4a. The similar case for ± 10 kVcm−1 was
also observed as other residual polarization states C and
D in Fig. 4a, which also reflects the non-volatile states in
our sample. When the pulsed electric fields are applied
to − 5 or − 10 kVcm−1 and reduced to 0 subsequently,
we can see that the remanence is relatively large
immediately, and when it is applied to 5 or 10 kVcm−1

and reduced to 0 subsequently, the remanence is
significantly reduced; this phenomenon and the value of
Mr/Ms are consistent with the results of Fig 3a, b. We
carried out a similar measurement in the other direction
of the sample and got similar results as shown in Fig. 4b.
It can be seen that four distinct and stable residual mag-
netic states are switched by two pulsed electric fields.

Fig. 3 a, c The dependence of Mr/Ms of the electric field was measured by sweeping the electric field form + 10 to − 10 kVcm−1 in the [100] and
[01-1] directions, respectively. b, d The dependence of Mr/Ms on the electric field was measured by sweeping the electric field from form + 5 to
− 5 kVcm−1 in the [100] and [01-1] directions, respectively. The numbers and arrows express the steps and direction of the measurement. And the
capital letters in this figure express the values of Mr/Ms at the remnant polarization states

Fig. 4 The normalized remnant magnetization ratio Mr/Ms under the pulsed electric field. a The change in Mr/Ms under the pulsed electric fields
± 5 and ± 10 kVcm−1 along [100] direction, respectively. b The change in Mr/Ms under the pulsed electric field ± 5 and ± 10 kVcm−1 along [01-1]
direction, respectively. The capital letters in this figure express the various remnant polarization states
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The four resistive states of E, F, G, and H are generated by
the pulsed electric field switching of ± 5 and ± 10 kVcm−1

and then instantly removed in the [01-1] direction,
respectively. In summary, the remanence of Co2FeAl/
PMN-PT heterogeneous is stress control and thus realiz-
ing the multistate remanence under the pulsed electric
field, which can be used for polymorphic storage.

Conclusions
In summary, the non-volatile electric field-mediated mag-
netic properties in the CFA/PMN-PT heterostructure are
investigated at room temperature. The striped domain
structure was obtained by the MFM measurement in the
CFA film. The magnetic anisotropy was modulated by the
electric field. The result measured by rotating-angle VSM
demonstrates piezostrain-mediated non-volatile 90°
magnetic easy axis rotation at − 0 and + 5 kVcm−1.
Additionally, the piezostrain-mediated non-volatile stable
remanent magnetization reversal in the two directions is
observed under positive and negative pulsed electric fields,
which can be used for magnetic storage [32, 33].
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